1,064 research outputs found

    Fermi Edge Resonances in Non-equilibrium States of Fermi Gases

    Full text link
    We formulate the problem of the Fermi Edge Singularity in non-equilibrium states of a Fermi gas as a matrix Riemann-Hilbert problem with an integrable kernel. This formulation is the most suitable for studying the singular behavior at each edge of non-equilibrium Fermi states by means of the method of steepest descent, and also reveals the integrable structure of the problem. We supplement this result by extending the familiar approach to the problem of the Fermi Edge Singularity via the bosonic representation of the electronic operators to non-equilibrium settings. It provides a compact way to extract the leading asymptotes.Comment: Accepted for publication, J. Phys.

    Orthogonality catastrophe and shock waves in a non-equilibrium Fermi gas

    Full text link
    A semiclassical wave-packet propagating in a dissipationless Fermi gas inevitably enters a "gradient catastrophe" regime, where an initially smooth front develops large gradients and undergoes a dramatic shock wave phenomenon. The non-linear effects in electronic transport are due to the curvature of the electronic spectrum at the Fermi surface. They can be probed by a sudden switching of a local potential. In equilibrium, this process produces a large number of particle-hole pairs, a phenomenon closely related to the Orthogonality Catastrophe. We study a generalization of this phenomenon to the non-equilibrium regime and show how the Orthogonality Catastrophe cures the Gradient Catastrophe, providing a dispersive regularization mechanism. We show that a wave packet overturns and collapses into modulated oscillations with the wave vector determined by the height of the initial wave. The oscillations occupy a growing region extending forward with velocity proportional to the initial height of the packet. We derive a fundamental equation for the transition rates (MKP-equation) and solve it by means of the Whitham modulation theory.Comment: 5 pages, 1 figure, revtex4, pr

    Fermi distribution of semicalssical non-eqilibrium Fermi states

    Full text link
    When a classical device suddenly perturbs a degenerate Fermi gas a semiclassical non-equilibrium Fermi state arises. Semiclassical Fermi states are characterized by a Fermi energy or Fermi momentum that slowly depends on space or/and time. We show that the Fermi distribution of a semiclassical Fermi state has a universal nature. It is described by Airy functions regardless of the details of the perturbation. In this letter we also give a general discussion of coherent Fermi states

    Gradient Catastrophe and Fermi Edge Resonances in Fermi Gas

    Full text link
    A smooth spatial disturbance of the Fermi surface in a Fermi gas inevitably becomes sharp. This phenomenon, called {\it the gradient catastrophe}, causes the breakdown of a Fermi sea to disconnected parts with multiple Fermi points. We study how the gradient catastrophe effects probing the Fermi system via a Fermi edge singularity measurement. We show that the gradient catastrophe transforms the single-peaked Fermi-edge singularity of the tunneling (or absorption) spectrum to a set of multiple asymmetric singular resonances. Also we gave a mathematical formulation of FES as a matrix Riemann-Hilbert problem

    Quantum Shock Waves - the case for non-linear effects in dynamics of electronic liquids

    Full text link
    Using the Calogero model as an example, we show that the transport in interacting non-dissipative electronic systems is essentially non-linear. Non-linear effects are due to the curvature of the electronic spectrum near the Fermi energy. As is typical for non-linear systems, propagating wave packets are unstable. At finite time shock wave singularities develop, the wave packet collapses, and oscillatory features arise. They evolve into regularly structured localized pulses carrying a fractionally quantized charge - {\it soliton trains}. We briefly discuss perspectives of observation of Quantum Shock Waves in edge states of Fractional Quantum Hall Effect and a direct measurement of the fractional charge

    The experience of enchantment in human-computer interaction

    Get PDF
    Improving user experience is becoming something of a rallying call in human–computer interaction but experience is not a unitary thing. There are varieties of experiences, good and bad, and we need to characterise these varieties if we are to improve user experience. In this paper we argue that enchantment is a useful concept to facilitate closer relationships between people and technology. But enchantment is a complex concept in need of some clarification. So we explore how enchantment has been used in the discussions of technology and examine experiences of film and cell phones to see how enchantment with technology is possible. Based on these cases, we identify the sensibilities that help designers design for enchantment, including the specific sensuousness of a thing, senses of play, paradox and openness, and the potential for transformation. We use these to analyse digital jewellery in order to suggest how it can be made more enchanting. We conclude by relating enchantment to varieties of experience.</p

    Quantum Hall transitions: An exact theory based on conformal restriction

    Full text link
    We revisit the problem of the plateau transition in the integer quantum Hall effect. Here we develop an analytical approach for this transition, based on the theory of conformal restriction. This is a mathematical theory that was recently developed within the context of the Schramm-Loewner evolution which describes the stochastic geometry of fractal curves and other stochastic geometrical fractal objects in 2D space. Observables elucidating the connection with the plateau transition include the so-called point-contact conductances (PCCs) between points on the boundary of the sample, described within the language of the Chalker-Coddington network model. We show that the disorder-averaged PCCs are characterized by classical probabilities for certain geometric objects in the plane (pictures), occurring with positive statistical weights, that satisfy the crucial restriction property with respect to changes in the shape of the sample with absorbing boundaries. Upon combining this restriction property with the expected conformal invariance at the transition point, we employ the mathematical theory of conformal restriction measures to relate the disorder-averaged PCCs to correlation functions of primary operators in a conformal field theory (of central charge c=0c=0). We show how this can be used to calculate these functions in a number of geometries with various boundary conditions. Since our results employ only the conformal restriction property, they are equally applicable to a number of other critical disordered electronic systems in 2D. For most of these systems, we also predict exact values of critical exponents related to the spatial behavior of various disorder-averaged PCCs.Comment: Published versio

    Um companheiro de leituras

    Full text link

    Viscous fingering and a shape of an electronic droplet in the Quantum Hall regime

    Full text link
    We show that the semiclassical dynamics of an electronic droplet confined in the plane in a quantizing inhomogeneous magnetic field in the regime when the electrostatic interaction is negligible is similar to viscous (Saffman-Taylor) fingering on the interface between two fluids with different viscosities confined in a Hele-Shaw cell. Both phenomena are described by the same equations with scales differing by a factor of up to 10−910^{-9}. We also report the quasiclassical wave function of the droplet in an inhomogeneous magnetic field.Comment: 4 pages, 1 eps figure include

    On harmonic measure of critical curves

    Full text link
    Fractal geometry of critical curves appearing in 2D critical systems is characterized by their harmonic measure. For systems described by conformal field theories with central charge c⩽1c\leqslant 1, scaling exponents of harmonic measure have been computed by B. Duplantier [Phys. Rev. Lett. {\bf 84}, 1363 (2000)] by relating the problem to boundary two-dimensional gravity. We present a simple argument that allows us to connect harmonic measure of critical curves to operators obtained by fusion of primary fields, and compute characteristics of fractal geometry by means of regular methods of conformal field theory. The method is not limited to theories with c⩽1c\leqslant 1.Comment: Some more correction
    • …
    corecore